
  

  

Abstract—Until recently, therapy robotics mainly 
concentrated on providing the types of exercises that therapists 
can also give their patients, freeing therapists to perform the 
difficult tasks of personalizing the exercises to each patient and 
planning the exercise regimens. In addition, therapists then 
translated the quantitative diagnoses provided by the machines, 
in terms of strength and control improvements realized, into 
quality of life changes through established and validated 
clinical scales. More recently, the field of therapy robotics has 
begun to explore new types of exercises through novel interface 
designs: 1) immersive virtual interfaces provide motivating 
environments that keep patients engaged in their therapy and 
increase compliance; 2) distortion-based force and visual 
feedback interfaces increase the effectiveness of highly 
repetitive exercises to reestablish cerebral sensorimotor control 
pathways.  These interfaces are turning robots into beneficial, 
always-on-call, and high-power tools for therapists to speed the 
delivery of effective treatments. This paper will present 
progress in the field and discuss the power of the interface to 
create and enhance engagement. 

I. INTRODUCTION 
CCORDINGto the World Health Organization, stroke is 
the leading cause of disability worldwide, with 80% of 

first time strokes leading to upper-extremity hemiparesis [1]. 
Since the majority of daily life activities involve use of one’s 
upper limbs [2], effective rehabilitation for both gross and 
fine motor movements is crucially needed in order to return 
stroke survivors back to their independent daily lives. 

Over the past two decades, a growing number of studies 
has been dedicated to the development of upper-limb robotic 
stroke therapy systems, which have a number of advantages 
over conventional therapy methods [3], such as the ability 
to: provide more intense and longer duration therapy, deliver 
unconventional therapy (e.g., visual error augmentation) via 
the robots’ programmability, increase therapy time provided 
to each patient and save associated costs by automating a 
significant part of the therapy. These features thereby allow 
for workplace multiplication, provide quantitative and more 
precise measures of a patient’s motor function and 
progression, and finally, make tele-rehabilitation a viable 
adjunct to less-frequent in-clinic care. 

While therapy is based on motor learning principles and 
the physical, strengthening effect of exercise, motivation of 
the patient is also a key factor in the success of a therapy 
regimen. In fact, a qualitative research has shown that 
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patients with low motivation believe they do not have the 
strength to complete exercise tasks, which in turn will lead 
to therapy abandonment [4]. Sustaining motivation and 
engagement becomes even more critical as therapy sessions 
shift from being therapist-based to robot-based; a therapist 
can observe a patient’s (physical and emotional) condition 
and shape the exercise task accordingly, while giving 
positive and motivating verbal feedback. However, 
programming this into a robot is a difficult challenge. 

To address this issue, robotic therapy research is currently 
being extended to making it more engaging. For example, 
virtual reality-based interfaces, video games and immersive 
experiences increase the patient’s engagement in the therapy 
process. This method, also known as implicit learning, has 
been proven to be more effective than the conventional 
paradigm of explicit learning [3], [5]. 

However, even with improvements in neurorehabilitation 
strategies implemented in robotic therapy systems (e.g., 
error augmentation through force fields or visual distortion 
and bilateral training instead of the massed practice 
paradigm) and increased task engagement via use of virtual 
reality, a therapist is still needed to set up appropriate 
exercise protocols based on each patient’s strength, 
performance and emotional state.  

With the well-established literature on the relationship 
between emotional state and physiological signals, in the 
recent years it has been suggested that the engagement level 
of robotic rehabilitation can be increased by monitoring the 
patient's physiology during therapy. In this paper, we 
propose a method to incorporate the patient’s biofeedback 
and performance into a robotic rehabilitation system’s online 
decision-making process. We believe that this approach will 
lead to faster learning and recovery time as well as a reduced 
risk of abandonment of therapy programs compared to 
currently existing systems by maximizing patient 
motivation. 

II. BACKGROUND 
During the past two decades, most of the research in the 

field of robot-assisted rehabilitation has been focused on 
replicating conventional therapy paradigms (e.g., repetitive 
movement training or massed practice) with robots [3]. The 
majority of applications in upper-extremity rehabilitation are 
dedicated to recovery of gross motor movement, mainly 
defined as reaching tasks using the shoulder and elbow. A 
well-known example is MIT-Manus [6] (commercially 
available as InMotion2; Interactive Motion Technologies, 
Inc., Boston, MA), which uses an active assistive strategy. 
This system provides low-impedance force cues to correct 
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the motion of the patient’s arm, in planar, straight-line, 
point-to-point reaching tasks. 

Recovery of fine motor movement (e.g., finger movement 
and grasping) also plays a significant role in restoring daily 
life quality and independence of stroke survivors. Interactive 
Motion Technologies introduced InMotion3 as a wrist 
rehabilitation robot, which uses the same neurorehabilitation 
principles as InMotion2. Studies have demonstrated 
improvement of wrist and finger function using the upper-
limb subcomponent of the Fugl-Meyer scale [7]. 

Alongside more conventional rehabilitation paradigms, 
such as active assistive/resistive strategies, bilateral training 
of the paretic and non-paretic arms is another strategy. The 
Mirror Image Movement Enabler (MIME) system was 
among the first robotic systems that used this approach, 
guiding the paretic arm to move along the same 3D 
trajectory, in mirror to the non-paretic arm. A group of 
subjects training with this system showed larger 
improvement in the proximal movement portion of the Fugl-
Meyer test compared with a control group undergoing 
conventional therapy [8]. The MIME system has recently 
been augmented with the hand-function-exercise RiceWrist 
[9] and is undergoing clinical trials similar to those using the 
inMotion3 system. 

One of the advantages of robotic systems over a human 
therapist is that robots can be programmed to deliver 
unconventional therapies. These include use of virtual 
environments and gaming interfaces, distortion of visual 
feedback and augmentation of error via force fields. 
GENTLE/s system uses a HapticMASTER robot (MOOG 
FCS Robotics Inc., Nieuw-Vennep, The Netherlands) as a 
means to interact with a virtual environment. Training with 
this system led to function improvement (measured by upper 
limb section of Fugl-Meyer scale) in chronic stroke subjects 
[10]. Driver’s SEAT has been used to incorporate a 
constraint-induced therapy paradigm into a gaming interface 
(simulation of steering a car) to increase subject motivation 
and promote coordinated bilateral movement in the upper 
limbs [11].  

Feedback distortion, a growing unconventional therapy 
paradigm, refers to use of intentionally inaccurate feedback. 
In recent studies in the labs of Patton [12,13] and O’Malley 
[14], subjects were asked to use a robotic manipulator to 
move a round spot to a visual target presented to them on a 
monitor. Since the robot and the subject’s hand were 
obscured, the only visual feedback was from the moving 
spot on the monitor. Three target points were placed radially 
from the starting point and subjects were asked to move to a 
target when it was highlighted and then go back to the 
starting point. In this repetitive movement training in a 
virtual environment, subjects showed faster learning when 
the position of the point was shown further away from the 
actual position of it by augmenting the initial trajectory error 
(measured as deviation from the straight line between 
starting point and target). Subjects also showed the ability to 
adapt to a visual distortion (implemented by rotating the 

subject’s actual hand position around the starting point) 
without a visual error augmentation. This type of training 
was shown to lead to persistent functional changes with 
hemispheral post-stroke subjects [12]. 

As previously mentioned, robotic systems provide 
objective information about a subject’s motor performance, 
but lack the ability to offer information about a subject’s 
affective state (e.g., motivation, attention and engagement). 
Real-time analysis of physiological signals, such as 
electrocardiography, respiration rate, skin conductance and 
breathing rate, is one way to characterize different aspects of 
affect. Kulić and Croft developed methods to estimate 
human affective state in real time using interpretation of 
psychophysiological signals in a two-dimensional valance-
arousal representation [15] using Hidden Markov Models 
[16] and a Fuzzy Inference Engine [17]. In a recent study, 
Pan et al. investigated the viability of a physiologically-
triggered bookmarking paradigm [18]. In this study, 
orienting responses (derived through monitoring of the 
subject’s galvanic skin response) to a disruption of attention 
were used to bookmark electronic media with 84% success, 
so subjects can resume reading the media after attending to 
the interruption. Zoghbi et al. developed an explicit method 
of real time affective state reporting [19]. In this method, the 
subjects were asked to express their emotions via an in-
house developed hand-held joystick called the Affective 
State Reporting Device (ASRD). 

A possible issue with using psychophysiological signals 
in rehabilitation is that such signals are determined by both a 
person’s psychological state and physical activity. However, 
investigations by Munih [20,21] suggest that physiological 
signals can reliably describe a person’s psychological state 
even in the presence of physical activity, and thus they can 
be useful in designing a bio-cooperative rehabilitation 
system.  

A good example of such a system is demonstrated by the 
work of Liu et al. in using psychophysiological signals in a 
closed-loop exercise system [22]. A robot-based basketball 
task was designed in which the robotic coach can change 
task difficulty based on anxiety or performance of the human 
player. This study showed that determining challenge level 
in a human-robot interaction task based on a human’s 
affective state leads to higher performance improvement 
compared to setting the challenge based only on the person’s 
performance. 

III. OBJECTIVES AND APPROACH 
In a new line of stroke therapy research at the UBC 

Collaborative Advanced Robotics and Intelligent Systems 
(CARIS) Lab, we are integrating the concepts enumerated 
above, namely physically demanding reaching motions, an 
engaging interface, distorted feedback, and real-time 
physiological signal analysis.  

Our objective is to design unconventional therapies that 
will lead to faster improvement of motor function. The final 
outcome of this research will be a system capable to 



  

modulate task challenge (level of distortion or visual error 
augmentation) in real time using a subject’s physiological 
signals. Thus, the three main components of this system will 
be: 1) a point-to-point reaching task similar to those used in 
the works of Patton and O’Malley [12-14], 2) real-time 
closed-loop use of physiological signals as in the Liu and 
Sarkar Human-Robot Interaction task [22] and 3) machine 
learning and control algorithm based on the correlation of 
these signals with the subject’s affective state [16,17], which 
relates directly to the patient’s level of motivation. Our 
research will be conducted in three stages. 

First, we aim to reveal a correlation between task 
challenge (level of visual distortion and error augmentation) 
and subject’s physiological measures such as skin 
conductance response, heart rate and respiration rate. 
Physiological signals will be recorded from subjects while 
the able-bodied subjects are presented to different levels of 
task difficulty. Also, an affect grid [15] questionnaire will be 
used to relate physiological signals with the subject’s self-
reporting of affective states, which can be used to assess 
level of motivation. We will investigate correlations between 
physiological measures, performance and self-reports of 
attention using statistical tools. A statistically significant 
correlation from this study will demonstrate the dependency 
of affect on change of distortion. 

In the second stage, we will use physiological signals to 
modify level of visual distortion and error augmentation 
with the goal of achieving a stable level of attention and 
performance. In this stage, we aim to close the control loop 
and implement use of biofeedback as a decision-making 
factor in changing the level of challenge, as described in 
[22]. Again, with able-bodied subjects, we will investigate 
effectiveness of two different decision-making factors: 
subject’s performance and subject’s affective state. Task 
parameters such as level of trajectory distortion and 
augmentation of error will be modified with the decision-
making factors. 

Finally, in stage 3, we will recruit stroke survivors and 

conduct a pilot study in collaboration with physical 
therapists to investigate the effects of the system we are 
developing, especially real-time use of physiological signals 
on the recovery process. 

This research at all three stages will involve iterative 
design refinement and human subject testing. All studies 
involving human subjects will be conducted under an 
approved protocol of the Research Ethics Board of the 
University of British Columbia. 

IV. PRELIMINARY RESULTS 
In a preliminary study with one able-bodied subject, we 

replicated the experiment described in [11]. Using a planar 
2-DOF manipulandum, the right-handed subject was asked 
to reach for six visual targets presented on a flat screen 
monitor: from the mid-point of the screen to a target point 
and then back to the starting point. Targets were placed 
radially from the screen centre, 60 degrees apart from each 
other. The subject was asked to reach for each target as fast 
as possible as soon as it became highlighted. A force field as 
a function of manipulandum end-effector speed perturbed 
the subject’s trajectory laterally from a straight line (i.e., 
distortion field). Also, the subject’s hand and manipulandum 
were covered so that the only visual feedback was from the 
monitor. 

After 30 reach-and-retract trials without force field to 
familiarize the subject, the subject was exposed to the force 
field (distortion) in the subsequent 150 trials (including both 
first exposure to distortion and trained movement in the 
distorted environment). This was followed by 30 trials 
without any distortion to examine after-effects. During the 
experiment, skin conductance response (SCR) between 
index and middle fingers of the subject’s left hand (non-
moving hand) was recorded.  

Figure 1 summarizes the data from this experiment. The 
top half of this figure shows the subject’s hand trajectory 
during each phase of the experiment. In the direction of 

 
Fig. 1.  Summary of data from a preliminary experiment. The top frames show the subject’s reaching trajectories in 
different stages of the experiment, while the bottom graph shows the subject’s skin conductance response measured 
during the experiment. 



  

experiment progress (left to right): (a) the able-bodied 
subject performed the point-to-point task following almost 
straight lines; (b) upon the first exposure to distortion, error 
in movement trajectory grew larger (error is indicated by 
deviation from the straight line trajectory), but as the 
experiment progressed and subject trained in the distorted 
environment, the subject became adapted to the distortion (c) 
and trajectory error lessened. However, in (d), the last stage 
when distortion was removed, once again trajectory errors 
grew larger in the opposite direction, once again indicating 
adaptation to the force field. Not shown in this figure are the 
wash-out phase data, which predictably demonstrate a return 
to baseline, similar to (a). 

While these results are not surprising, a more interesting 
finding is that, upon a change in challenge level of the task 
(activating and deactivating the force field), there was a 
sudden change in skin conductance response (SCR) as 
shown in the lower part of Figure 1. This preliminarily 
experiment indicates a correlation between SCR and task 
challenge that we will exploit in our next set of experiments. 

V. CONCLUSION 
During the past two decades, neurorehabilitation robotic 

systems have made significant progress in demonstrating 
effectiveness. Key features such as programmability and 
high repeatability make such systems of special interest. 
Currently, research in this field is focused on finding more 
effective neurorehabilitation strategies such as 
unconventional therapy regimens, taking advantage of the 
power of closed-loop robotic systems that therapists oversee. 
However, it is vital to address the current disadvantages of 
robotic systems: how can you replace a therapist’s positive 
verbal reinforcement “good job!” in a robotic therapy system 
in a convincing manner? 

As the physical component of therapy shifts from 
therapist to robot, the issue of sustaining the patient’s 
motivation and engagement in a therapy regimen grows even 
more critical. Early research in the closed-loop use of a 
patient’s psychophysiological signals to determine affective 
state and level of attention (and thus engagement) is highly 
encouraging. We therefore predict that real-time use of this 
information as a factor to modify challenge level in novel, 
unconventional therapy regimens can make robotic therapy 
systems more engaging. 
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